

Cartographer ROS Integration

	Configuration

	Tuning
	Two systems

	Built-in tools

	Example: tuning local SLAM

	Special Cases

	ROS API
	Cartographer Node

	Offline Node

	Occupancy grid Node

	Assets writer
	Sample usage

	Configuration

	First-person visualization of point clouds

	Demos
	Pure localization

	Revo LDS

	PR2

	Taurob Tracker

	Public Data
	2D Cartographer Backpack – Deutsches Museum

	3D Cartographer Backpack – Deutsches Museum

	PR2 – Willow Garage

	Magazino

	Frequently asked questions
	Why is laser data rate in the 3D bags higher than the maximum reported 20 Hz rotation speed of the VLP-16?

	Why is IMU data required for 3D SLAM but not for 2D?

	How do I build cartographer_ros without rviz support?

	How do I fix the “You called InitGoogleLogging() twice!” error?

Cartographer [https://github.com/googlecartographer/cartographer] is a system that provides real-time simultaneous localization
and mapping (SLAM [https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping]) in 2D and 3D across multiple platforms and sensor
configurations. This project provides Cartographer’s ROS integration.

System Requirements

See Cartographer’s system requirements [https://google-cartographer.readthedocs.io/en/latest/index.html#system-requirements].

The following ROS distributions [http://wiki.ros.org/Distributions] are currently supported:

	Indigo

	Kinetic

Building & Installation

We recommend using wstool [http://wiki.ros.org/wstool] and rosdep [http://wiki.ros.org/rosdep]. For faster builds, we also recommend using
Ninja [https://ninja-build.org].

Install wstool and rosdep.
sudo apt-get update
sudo apt-get install -y python-wstool python-rosdep ninja-build

Create a new workspace in 'catkin_ws'.
mkdir catkin_ws
cd catkin_ws
wstool init src

Merge the cartographer_ros.rosinstall file and fetch code for dependencies.
wstool merge -t src https://raw.githubusercontent.com/googlecartographer/cartographer_ros/master/cartographer_ros.rosinstall
wstool update -t src

Install proto3.
src/cartographer/scripts/install_proto3.sh

Install deb dependencies.
The command 'sudo rosdep init' will print an error if you have already
executed it since installing ROS. This error can be ignored.
sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src --rosdistro=${ROS_DISTRO} -y

Build and install.
catkin_make_isolated --install --use-ninja
source install_isolated/setup.bash

Running the demos

Now that Cartographer and Cartographer’s ROS integration are installed,
download the example bags (e.g. 2D and 3D backpack collections of the
Deutsches Museum [https://en.wikipedia.org/wiki/Deutsches_Museum]) to a
known location, in this case ~/Downloads, and use roslaunch to bring up
the demo:

Download the 2D backpack example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/cartographer_paper_deutsches_museum.bag

Launch the 2D backpack demo.
roslaunch cartographer_ros demo_backpack_2d.launch bag_filename:=${HOME}/Downloads/cartographer_paper_deutsches_museum.bag

Download the 3D backpack example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-05-14-14-00.bag

Launch the 3D backpack demo.
roslaunch cartographer_ros demo_backpack_3d.launch bag_filename:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag

The launch files will bring up roscore and rviz automatically.
See Demos for additional demos including localization and various robots.

Configuration

Note that Cartographer’s ROS integration uses tf2 [http://wiki.ros.org/tf2], thus all frame IDs are
expected to contain only a frame name (lower-case with underscores) and no
prefix or slashes. See REP 105 [http://www.ros.org/reps/rep-0105.html] for commonly used coordinate frames.

Note that topic names are given as base names (see ROS Names [http://wiki.ros.org/Names]) in
Cartographer’s ROS integration. This means it is up to the user of the
Cartographer node to remap, or put them into a namespace.

The following are Cartographer’s ROS integration top-level options, all of which
must be specified in the Lua configuration file:

	map_frame

	The ROS frame ID to use for publishing submaps, the parent frame of poses,
usually “map”.

	tracking_frame

	The ROS frame ID of the frame that is tracked by the SLAM algorithm. If an IMU
is used, it should be at its position, although it might be rotated. A common
choice is “imu_link”.

	published_frame

	The ROS frame ID to use as the child frame for publishing poses. For example
“odom” if an “odom” frame is supplied by a different part of the system. In
this case the pose of “odom” in the map_frame will be published. Otherwise,
setting it to “base_link” is likely appropriate.

	odom_frame

	Only used if provide_odom_frame is true. The frame between published_frame
and map_frame to be used for publishing the (non-loop-closed) local SLAM
result. Usually “odom”.

	provide_odom_frame

	If enabled, the local, non-loop-closed, continuous pose will be published as
the odom_frame in the map_frame.

	use_odometry

	If enabled, subscribes to nav_msgs/Odometry [http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html] on the topic “odom”. Odometry
must be provided in this case, and the information will be included in SLAM.

	num_laser_scans

	Number of laser scan topics to subscribe to. Subscribes to
sensor_msgs/LaserScan [http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html] on the “scan” topic for one laser scanner, or topics
“scan_1”, “scan_2”, etc. for multiple laser scanners.

	num_multi_echo_laser_scans

	Number of multi-echo laser scan topics to subscribe to. Subscribes to
sensor_msgs/MultiEchoLaserScan [http://docs.ros.org/api/sensor_msgs/html/msg/MultiEchoLaserScan.html] on the “echoes” topic for one laser scanner,
or topics “echoes_1”, “echoes_2”, etc. for multiple laser scanners.

	num_subdivisions_per_laser_scan

	Number of point clouds to split each received (multi-echo) laser scan into.
Subdividing a scan makes it possible to unwarp scans acquired while the
scanners are moving. There is a corresponding trajectory builder option to
accumulate the subdivided scans into a point cloud that will be used for scan
matching.

	num_point_clouds

	Number of point cloud topics to subscribe to. Subscribes to
sensor_msgs/PointCloud2 [http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html] on the “points2” topic for one rangefinder, or
topics “points2_1”, “points2_2”, etc. for multiple rangefinders.

	lookup_transform_timeout_sec

	Timeout in seconds to use for looking up transforms using tf2 [http://wiki.ros.org/tf2].

	submap_publish_period_sec

	Interval in seconds at which to publish the submap poses, e.g. 0.3 seconds.

	pose_publish_period_sec

	Interval in seconds at which to publish poses, e.g. 5e-3 for a frequency of
200 Hz.

	trajectory_publish_period_sec

	Interval in seconds at which to publish the trajectory markers, e.g. 30e-3
for 30 milliseconds.

Tuning

Tuning Cartographer is unfortunately really difficult.
The system has many parameters many of which affect each other.
This tuning guide tries to explain a principled approach on concrete examples.

Two systems

Cartographer can be seen as two separate, but related systems.
The first one is local SLAM (sometimes also called frontend).
Its job is build a locally consistent set of submaps and tie them together, but it will drift over time.
Most of its options can be found in trajectory_builder_2d.lua [https://github.com/googlecartographer/cartographer/blob/aba4575d937df4c9697f61529200c084f2562584/configuration_files/trajectory_builder_2d.lua] for 2D and trajectory_builder_3d.lua [https://github.com/googlecartographer/cartographer/blob/aba4575d937df4c9697f61529200c084f2562584/configuration_files/trajectory_builder_3d.lua] for 3D.

The other system is global SLAM (sometimes called the backend).
It runs in background threads and its main job is to find loop closure constraints.
It does that by scan-matching scans against submaps.
It also incorporates other sensor data to get a higher level view and identify the most consistent global solution.
In 3D, it also tries to find the direction of gravity.
Most of its options can be found in pose_graph.lua [https://github.com/googlecartographer/cartographer/blob/aba4575d937df4c9697f61529200c084f2562584/configuration_files/pose_graph.lua]

On a higher abstraction, the job of local SLAM is to generate good submaps and the job of global SLAM is to tie them most consistently together.

Built-in tools

Cartographer provides built-in tools for SLAM evaluation that can be particularly useful for measuring the local SLAM quality.
They are stand-alone executables that ship with the core cartographer library and are hence independent, but compatible with cartographer_ros.
Therefore, please head to the Cartographer Read the Docs Evaluation site [https://google-cartographer.readthedocs.io/en/latest/evaluation.html] for a conceptual overview and a guide on how to use the tools in practice.

These tools assume that you have serialized the SLAM state to a .pbstream file.
With cartographer_ros, you can invoke the assets_writer to serialize the state - see the Assets writer section for more information.

Example: tuning local SLAM

For this example we’ll start at cartographer commit aba4575 [https://github.com/googlecartographer/cartographer/commit/aba4575d937df4c9697f61529200c084f2562584] and cartographer_ros commit 99c23b6 [https://github.com/googlecartographer/cartographer_ros/commit/99c23b6ac7874f7974e9ed808ace841da6f2c8b0] and look at the bag b2-2016-04-27-12-31-41.bag from our test data set.

At our starting configuration, we see some slipping pretty early in the bag.
The backpack passed over a ramp in the Deutsches Museum which violates the 2D assumption of a flat floor.
It is visible in the laser scan data that contradicting information is passed to the SLAM.
But the slipping also indicates that we trust the point cloud matching too much and disregard the other sensors quite strongly.
Our aim is to improve the situation through tuning.

If we only look at this particular submap, that the error is fully contained in one submap.
We also see that over time, global SLAM figures out that something weird happened and partially corrects for it.
The broken submap is broken forever though.

Since the problem here is slippage inside a submap, it is a local SLAM issue.
So let’s turn off global SLAM to not mess with our tuning.

POSE_GRAPH.optimize_every_n_nodes = 0

Correct size of submaps

Local SLAM drifts over time, only loop closure can fix this drift.
Submaps must be small enough so that the drift inside them is below the resolution, so that they are locally correct.
On the other hand, they should be large enough to be being distinct for loop closure to work properly.
The size of submaps is configured through TRAJECTORY_BUILDER_2D.submaps.num_range_data.
Looking at the individual submaps for this example they already fit the two constraints rather well, so we assume this parameter is well tuned.

The choice of scan matchers

The idea behind local SLAM is to use sensor data of other sensors besides the range finder to predict where the next scan should be inserted into the submap.
Then, the CeresScanMatcher takes this as prior and finds the best spot where the scan match fits the submap.
It does this by interpolating the submap and sub-pixel aligning the scan.
This is fast, but cannot fix errors that are significantly larger than the resolution of the submaps.
If your sensor setup and timing is reasonable, using only the CeresScanMatcher is usually the best choice to make.

If you do not have other sensors or you do not trust them, Cartographer also provides a RealTimeCorrelativeScanMatcher.
It uses an approach similar to how scans are matched against submaps in loop closure, but instead it matches against the current submap.
The best match is then used as prior for the CeresScanMatcher.
This scan matcher is very expensive and will essentially override any signal from other sensors but the range finder, but it is robust in feature rich environments.

Tuning the correlative scan matcher

TODO

Tuning the CeresScanMatcher

In our case, the scan matcher can freely move the match forward and backwards without impacting the score.
We’d like to penalize this situation by making the scan matcher pay more for deviating from the prior that it got.
The two parameters controlling this are TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight and rotation_weight.
The higher, the more expensive it is to move the result away from the prior, or in other words: scan matching has to generate a higher score in another position to be accepted.

For instructional purposes, let’s make deviating from the prior really expensive:

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1e3

This allows the optimizer to pretty liberally overwrite the scan matcher results.
This results in poses close to the prior, but inconsistent with the depth sensor and clearly broken.
Experimenting with this value yields a better result at 2e2.

Here, the scan matcher used rotation to still slightly mess up the result though.
Setting the rotation_weight to 4e2 leaves us with a reasonable result.

Verification

To make sure that we did not overtune for this particular issue, we need to run the configuration against other collected data.
In this case, the new parameters did reveal slipping, for example at the beginning of b2-2016-04-05-14-44-52.bag, so we had to lower the translation_weight to 1e2.
This setting is worse for the case we wanted to fix, but no longer slips.
Before checking them in, we normalize all weights, since they only have relative meaning.
The result of this tuning was PR 428 [https://github.com/googlecartographer/cartographer/pull/428].
In general, always try to tune for a platform, not a particular bag.

Special Cases

The default configuration and the above tuning steps are focused on quality.
Only after we have achieved good quality, we can further consider special cases.

Low Latency

By low latency, we mean that an optimized local pose becomes available shortly after sensor input was received,
usually within a second, and that global optimization has no backlog.
Low latency is required for online algorithms, such as robot localization.
Local SLAM, which operates in the foreground, directly affects latency.
Global SLAM builds up a queue of background tasks.
When global SLAM cannot keep up the queue, drift can accumulate indefinitely,
so global SLAM should be tuned to work in real time.

There are many options to tune the different components for speed, and we list them ordered from
the recommended, straightforward ones to the those that are more intrusive.
It is recommended to only explore one option at a time, starting with the first.
Configuration parameters are documented in the Cartographer documentation [https://google-cartographer.readthedocs.io/en/latest/configuration.html].

To tune global SLAM for lower latency, we reduce its computational load
until is consistently keeps up with real-time input.
Below this threshold, we do not reduce it further, but try to achieve the best possible quality.
To reduce global SLAM latency, we can

	decrease optimize_every_n_nodes

	increase MAP_BUILDER.num_background_threads up to the number of cores

	decrease global_sampling_ratio

	decrease constraint_builder.sampling_ratio

	increase constraint_builder.min_score

	for the adaptive voxel filter(s), decrease .min_num_points, .max_range, increase .max_length

	increase voxel_filter_size, submaps.resolution, decrease submaps.num_range_data

	decrease search windows sizes, .linear_xy_search_window, .linear_z_search_window, .angular_search_window

	increase global_constraint_search_after_n_seconds

	decrease max_num_iterations

To tune local SLAM for lower latency, we can

	increase voxel_filter_size

	increase submaps.resolution

	for the adaptive voxel filter(s), decrease .min_num_points, .max_range, increase .max_length

	decrease max_range (especially if data is noisy)

	decrease submaps.num_range_data

Note that larger voxels will slightly increase scan matching scores as a side effect,
so score thresholds should be increased accordingly.

Pure Localization in a Given Map

Pure localization is different from mapping.
First, we expect a lower latency of both local and global SLAM.
Second, global SLAM will usually find a very large number of inter constraints between the frozen trajectory
that serves as a map and the current trajectory.

To tune for pure localization, we should first enable TRAJECTORY_BUILDER.pure_localization = true and
strongly decrease POSE_GRAPH.optimize_every_n_nodes to receive frequent results.
With these settings, global SLAM will usually be too slow and cannot keep up.
As a next step, we strongly decrease global_sampling_ratio and constraint_builder.sampling_ratio
to compensate for the large number of constraints.
We then tune for lower latency as explained above until the system reliably works in real time.

If you run in pure_localization, submaps.resolution should be matching with the resolution of the submaps in the .pbstream you are running on.
Using different resolutions is currently untested and may not work as expected.

Odometry in Global Optimization

If a separate odometry source is used as an input for local SLAM (use_odometry = true), we can also tune the global SLAM to benefit from this additional information.

There are in total four parameters that allow us to tune the individual weights of local SLAM and odometry in the optimization:

POSE_GRAPH.optimization_problem.local_slam_pose_translation_weight
POSE_GRAPH.optimization_problem.local_slam_pose_rotation_weight
POSE_GRAPH.optimization_problem.odometry_translation_weight
POSE_GRAPH.optimization_problem.odometry_rotation_weight

We can set these weights depending on how much we trust either local SLAM or the odometry.
By default, odometry is weighted into global optimization similar to local slam (scan matching) poses.
However, odometry from wheel encoders often has a high uncertainty in rotation.
In this case, the rotation weight can be reduced, even down to zero.

ROS API

Cartographer Node

The cartographer_node [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/node_main.cc] is the SLAM node used for online, real-time SLAM.

Command-line Flags

TODO(hrapp): Should these not be removed? It seems duplicated efforts documenting them here and there.

	–configuration_directory

	First directory in which configuration files are searched, second is always
the Cartographer installation to allow including files from there.

	–configuration_basename

	Basename (i.e. not containing any directory prefix) of the configuration file
(e.g. backpack_3d.lua).

	–load_state_filename

	A Cartographer .pbstream state file that will be loaded from disk. This allows
to add new trajectories SLAMing from an earlier state.

	–load_frozen_state

	This boolean parameter controls if the saved state, specified using the option
–load_state_filename, is going to be loaded as a set of frozen (not
optimized) trajectories.

Subscribed Topics

The following range data topics are mutually exclusive. At least one source of
range data is required.

	scan (sensor_msgs/LaserScan [http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html])

	Supported in 2D and 3D (e.g. using an axially rotating planar laser scanner).
If num_laser_scans is set to 1 in the Configuration, this topic will
be used as input for SLAM. If num_laser_scans is greater than 1, multiple
numbered scan topics (i.e. scan_1, scan_2, scan_3, … up to and including
num_laser_scans) will be used as inputs for SLAM.

	echoes (sensor_msgs/MultiEchoLaserScan [http://docs.ros.org/api/sensor_msgs/html/msg/MultiEchoLaserScan.html])

	Supported in 2D and 3D (e.g. using an axially rotating planar laser scanner).
If num_multi_echo_laser_scans is set to 1 in the Configuration, this
topic will be used as input for SLAM. Only the first echo is used. If
num_multi_echo_laser_scans is greater than 1, multiple numbered echoes
topics (i.e. echoes_1, echoes_2, echoes_3, … up to and including
num_multi_echo_laser_scans) will be used as inputs for SLAM.

	points2 (sensor_msgs/PointCloud2 [http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html])

	If num_point_clouds is set to 1 in the Configuration, this topic will
be used as input for SLAM. If num_point_clouds is greater than 1, multiple
numbered points2 topics (i.e. points2_1, points2_2, points2_3, … up to and
including num_point_clouds) will be used as inputs for SLAM.

The following additional sensor data topics may also be provided.

	imu (sensor_msgs/Imu [http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html])

	Supported in 2D (optional) and 3D (required). This topic will be used as
input for SLAM.

	odom (nav_msgs/Odometry [http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html])

	Supported in 2D (optional) and 3D (optional). If use_odometry is
enabled in the Configuration, this topic will be used as input for
SLAM.

Published Topics

	scan_matched_points2 (sensor_msgs/PointCloud2 [http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html])

	Point cloud as it was used for the purpose of scan-to-submap matching. This
cloud may be both filtered and projected depending on the
Configuration.

	submap_list (cartographer_ros_msgs/SubmapList [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros_msgs/msg/SubmapList.msg])

	List of all submaps, including the pose and latest version number of each
submap, across all trajectories.

Services

All services responses include also a StatusResponse that comprises a code and a message field.
For consistency, the integer code is equivalent to the status codes used in the gRPC [https://developers.google.com/maps-booking/reference/grpc-api/status_codes] API.

	submap_query (cartographer_ros_msgs/SubmapQuery [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros_msgs/srv/SubmapQuery.srv])

	Fetches the requested submap.

	start_trajectory (cartographer_ros_msgs/StartTrajectory [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros_msgs/srv/StartTrajectory.srv])

	Starts another trajectory by specifying its sensor topics and trajectory
options as an binary-encoded proto. Returns an assigned trajectory ID.

	finish_trajectory (cartographer_ros_msgs/FinishTrajectory [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros_msgs/srv/FinishTrajectory.srv])

	Finishes the given trajectory_id’s trajectory by running a final optimization.

	write_state (cartographer_ros_msgs/WriteState [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros_msgs/srv/WriteState.srv])

	Writes the current internal state to disk into filename. The file will
usually end up in ~/.ros or ROS_HOME if it is set. This file can be used
as input to the assets_writer_main to generate assets like probability
grids, X-Rays or PLY files.

Required tf Transforms

Transforms from all incoming sensor data frames to the configured tracking_frame and published_frame must be available.
Typically, these are published periodically by a robot_state_publisher or a
static_transform_publisher.

Provided tf Transforms

The transformation between the configured map_frame
and published_frame is always provided.

If provide_odom_frame is enabled in the Configuration, a continuous
(i.e. unaffected by loop closure) transform between the configured odom_frame and published_frame will be provided.

Offline Node

The offline_node [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/offline_node_main.cc] is the fastest way of SLAMing a bag of sensor data.
It does not listen on any topics, instead it reads TF and sensor data out of a set of bags provided on the commandline.
It also publishes a clock with the advancing sensor data, i.e. replaces rosbag play.
In all other regards, it behaves like the cartographer_node.
Each bag will become a separate trajectory in the final state.
Once it is done processing all data, it writes out the final Cartographer state and exits.

Occupancy grid Node

The occupancy_grid_node [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/occupancy_grid_node_main.cc] listens to the submaps published by SLAM and builds a ROS occupancy_grid and publishes it.
This tool is to keep old nodes that require a single monolithic map to work happy until new nav stacks can deal with Cartographer’s submaps directly.
Generating the map is expensive and slow, so map updates are in the order of seconds.

Subscribed Topics

It subscribes to Cartographer’s submap_list topic only.

Published Topics

	map (nav_msgs/OccupancyGrid [http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html])

	If subscribed to, the node will continuously compute and publish the map. The
time between updates will increase with the size of the map. For faster
updates, use the submaps APIs.

Assets writer

The purpose of SLAM is to compute the trajectory of a single sensor through a metric space.
On a higher level, the input of SLAM is sensor data, its output is the best estimate of the trajectory up to this point in time.
To be real-time and efficient, Cartographer throws most of the sensor data away immediately.

The trajectory alone is rarely of interest.
But once the best trajectory is established, the full sensor data can be used to derive and visualize information about its surroundings.

Cartographer provides the assets writer for this.
Its inputs are

	the original sensor data fed to SLAM in a ROS bag file,

	the cartographer state, which is contained in the .pbstream file that SLAM creates,

	the sensor extrinsics (i.e. TF data from the bag or a URDF),

	and a pipeline configuration, which is defined in a .lua file.

The assets writer runs through the sensor data in batches with a known trajectory.
It can be used to color, filter and export SLAM point cloud data in a variety of formats.
For more information on what the asset writer can be used for, refer to the examples below below and the header files in cartographer/io [https://github.com/googlecartographer/cartographer/tree/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io].

Sample usage

Download the 3D backpack example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-14-14-00.bag

Launch the 3D offline demo.
roslaunch cartographer_ros offline_backpack_3d.launch bag_filenames:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag

Watch the output on the commandline until the offline node terminates.
It will have written b3-2016-04-05-14-14-00.bag.pbstream which represents the Cartographer state after it processed all data and finished all optimizations.
You could have gotten the same state data by running the online node and calling:

Finish the first trajectory. No further data will be accepted on it.
rosservice call /finish_trajectory 0

Ask Cartographer to serialize its current state.
rosservice call /write_state ${HOME}/Downloads/b3-2016-04-05-14-14-00.bag.pbstream

Now we run the assets writer with the sample configuration file [https://github.com/googlecartographer/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_3d.lua] for the 3D backpack:

roslaunch cartographer_ros assets_writer_backpack_3d.launch \
 bag_filenames:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag \
 pose_graph_filename:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag.pbstream

All output files are prefixed by --output_file_prefix which defaults to the filename of the first bag.
For the last example, if you specify points.ply in the pipeline configuration file, this will translate to ${HOME}/Downloads/b3-2016-04-05-14-14-00.bag_points.ply.

Configuration

The assets writer is modeled as a pipeline.
It consists of PointsProcessor [https://github.com/googlecartographer/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/points_processor.h]s and PointsBatch [https://github.com/googlecartographer/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/points_batch.h]s flow through it.
Data flows from the first processor to the next, each has the chance to modify the PointsBatch before passing it on.

For example the assets_writer_backpack_3d.lua [https://github.com/googlecartographer/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_3d.lua] uses min_max_range_filter to remove points that are either too close or too far from the sensor.
After this, it writes X-Rays, then recolors the PointsBatchs depending on the sensor frame ids and writes another set of X-Rays using these new colors.

The individual PointsProcessors are all in the cartographer/io [https://github.com/googlecartographer/cartographer/tree/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io] sub-directory and documented in their individual header files.

First-person visualization of point clouds

Generating a fly through of points is a two step approach:
First, write a PLY file with the points you want to visualize, then use point_cloud_viewer [https://github.com/googlecartographer/point_cloud_viewer].

The first step is usually accomplished by using IntensityToColorPointsProcessor [https://github.com/googlecartographer/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/intensity_to_color_points_processor.cc] to give the points a non-white color, then writing them to a PLY using PlyWritingPointsProcessor [https://github.com/googlecartographer/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/ply_writing_points_processor.h].
An example is in assets_writer_backpack_2d.lua [https://github.com/googlecartographer/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_2d.lua].

Once you have the PLY, follow the README of point_cloud_viewer [https://github.com/googlecartographer/point_cloud_viewer] to generate an on-disk octree data structure which can be viewed by one of the viewers in the same repo.

Demos

Pure localization

Pure localization demo in 2D: We use 2 different 2D bags from the Deutsche
Museum. The first one is used to generate the map, the second to run
pure localization.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-05-14-44-52.bag
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-27-12-31-41.bag
Generate the map: Run the next command, wait until cartographer_offline_node finishes.
roslaunch cartographer_ros offline_backpack_2d.launch bag_filenames:=${HOME}/Downloads/b2-2016-04-05-14-44-52.bag
Run pure localization:
roslaunch cartographer_ros demo_backpack_2d_localization.launch \
 load_state_filename:=${HOME}/Downloads/b2-2016-04-05-14-44-52.bag.pbstream \
 bag_filename:=${HOME}/Downloads/b2-2016-04-27-12-31-41.bag

Pure localization demo in 3D: We use 2 different 3D bags from the Deutsche
Museum. The first one is used to generate the map, the second to run
pure localization.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-13-54-42.bag
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-15-52-20.bag
Generate the map: Run the next command, wait until cartographer_offline_node finishes.
roslaunch cartographer_ros offline_backpack_3d.launch bag_filenames:=${HOME}/Downloads/b3-2016-04-05-13-54-42.bag
Run pure localization:
roslaunch cartographer_ros demo_backpack_3d_localization.launch \
 load_state_filename:=${HOME}/Downloads/b3-2016-04-05-13-54-42.bag.pbstream \
 bag_filename:=${HOME}/Downloads/b3-2016-04-05-15-52-20.bag

Revo LDS

Download the Revo LDS example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/revo_lds/cartographer_paper_revo_lds.bag

Launch the Revo LDS demo.
roslaunch cartographer_ros demo_revo_lds.launch bag_filename:=${HOME}/Downloads/cartographer_paper_revo_lds.bag

PR2

Download the PR2 example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-15-08-32-46.bag

Launch the PR2 demo.
roslaunch cartographer_ros demo_pr2.launch bag_filename:=${HOME}/Downloads/2011-09-15-08-32-46.bag

Taurob Tracker

Download the Taurob Tracker example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/taurob_tracker/taurob_tracker_simulation.bag

Launch the Taurob Tracker demo.
roslaunch cartographer_ros demo_taurob_tracker.launch bag_filename:=${HOME}/Downloads/taurob_tracker_simulation.bag

Public Data

2D Cartographer Backpack – Deutsches Museum

This data was collected using a 2D LIDAR backpack at the
Deutsches Museum [https://en.wikipedia.org/wiki/Deutsches_Museum].
Each bag contains data from an IMU, data from a horizontal LIDAR intended for 2D
SLAM, and data from an additional vertical (i.e. push broom) LIDAR.

License

Copyright 2016 The Cartographer Authors

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Data

	ROS Bag [http://wiki.ros.org/Bags]

	Duration

	Size

	Floor

	Known Issues

	b0-2014-07-11-10-58-16.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-10-58-16.bag]

	149 s

	38 MB

	
	OG

	

	b0-2014-07-11-11-00-49.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-11-00-49.bag]

	513 s

	135 MB

	
	OG

	

	b0-2014-07-21-12-42-53.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-42-53.bag]

	244 s

	64 MB

	
	OG

	

	b0-2014-07-21-12-49-19.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-49-19.bag]

	344 s

	93 MB

	EG

	1 gap in vertical laser data

	b0-2014-07-21-12-55-35.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-55-35.bag]

	892 s

	237 MB

	EG

	

	b0-2014-07-21-13-11-35.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-13-11-35.bag]

	615 s

	162 MB

	EG

	

	b0-2014-08-14-13-23-01.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-23-01.bag]

	768 s

	204 MB

	
	OG

	

	b0-2014-08-14-13-36-48.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-36-48.bag]

	331 s

	87 MB

	
	OG

	

	b0-2014-10-07-12-13-36.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-13-36.bag]

	470 s

	125 MB

	
	OG

	

	b0-2014-10-07-12-34-42.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-34-42.bag]

	491 s

	127 MB

	
	OG

	

	b0-2014-10-07-12-43-25.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-43-25.bag]

	288 s

	77 MB

	
	OG

	

	b0-2014-10-07-12-50-07.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-50-07.bag]

	815 s

	215 MB

	
	OG

	

	b1-2014-09-25-10-11-12.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-09-25-10-11-12.bag]

	1829 s

	480 MB

	EG

	

	b1-2014-10-02-14-08-42.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-08-42.bag]

	930 s

	245 MB

	
	OG

	

	b1-2014-10-02-14-33-25.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-33-25.bag]

	709 s

	181 MB

	
	OG

	

	b1-2014-10-07-12-12-04.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-12-04.bag]

	737 s

	194 MB

	
	OG

	

	b1-2014-10-07-12-34-51.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-34-51.bag]

	766 s

	198 MB

	
	OG

	

	b2-2014-11-24-14-20-50.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-20-50.bag]

	679 s

	177 MB

	
	OG

	

	b2-2014-11-24-14-33-46.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-33-46.bag]

	1285 s

	330 MB

	
	OG

	

	b2-2014-12-03-10-14-13.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-14-13.bag]

	1051 s

	275 MB

	
	OG

	

	b2-2014-12-03-10-33-51.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-33-51.bag]

	356 s

	89 MB

	
	OG

	

	b2-2014-12-03-10-40-04.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-40-04.bag]

	453 s

	119 MB

	
	OG

	

	b2-2014-12-12-13-51-02.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-13-51-02.bag]

	1428 s

	368 MB

	
	OG

	

	b2-2014-12-12-14-18-43.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-18-43.bag]

	1164 s

	301 MB

	
	OG

	

	b2-2014-12-12-14-41-29.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-41-29.bag]

	168 s

	46 MB

	
	OG

	

	b2-2014-12-12-14-48-22.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-48-22.bag]

	243 s

	65 MB

	
	OG

	

	b2-2014-12-17-14-33-12.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-33-12.bag]

	1061 s

	277 MB

	
	OG

	

	b2-2014-12-17-14-53-26.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-53-26.bag]

	246 s

	62 MB

	
	OG

	

	b2-2014-12-17-14-58-13.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-58-13.bag]

	797 s

	204 MB

	EG

	

	b2-2015-02-16-12-26-11.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-26-11.bag]

	901 s

	236 MB

	
	OG

	

	b2-2015-02-16-12-43-57.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-43-57.bag]

	1848 s

	475 MB

	
	OG

	

	b2-2015-04-14-14-16-36.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-16-36.bag]

	1353 s

	349 MB

	
	OG

	

	b2-2015-04-14-14-39-59.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-39-59.bag]

	670 s

	172 MB

	
	OG

	

	b2-2015-04-28-13-01-40.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-01-40.bag]

	618 s

	162 MB

	
	OG

	

	b2-2015-04-28-13-17-23.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-17-23.bag]

	2376 s

	613 MB

	
	OG

	

	b2-2015-05-12-12-29-05.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-29-05.bag]

	942 s

	240 MB

	
	OG

	2 gaps in laser data

	b2-2015-05-12-12-46-34.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-46-34.bag]

	2281 s

	577 MB

	
	OG

	14 gaps in laser data

	b2-2015-05-26-13-15-25.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-26-13-15-25.bag]

	747 s

	195 MB

	
	OG

	

	b2-2015-06-09-14-31-16.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-09-14-31-16.bag]

	1297 s

	336 MB

	
	OG

	

	b2-2015-06-25-14-25-51.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-25-14-25-51.bag]

	1071 s

	272 MB

	
	OG

	

	b2-2015-07-07-11-27-05.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-07-11-27-05.bag]

	1390 s

	362 MB

	
	OG

	

	b2-2015-07-21-13-03-21.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-21-13-03-21.bag]

	894 s

	239 MB

	
	OG

	

	b2-2015-08-04-13-39-24.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-04-13-39-24.bag]

	809 s

	212 MB

	
	OG

	

	b2-2015-08-18-11-42-31.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-42-31.bag]

	588 s

	155 MB

	UG

	

	b2-2015-08-18-11-55-04.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-55-04.bag]

	504 s

	130 MB

	UG

	

	b2-2015-08-18-12-06-34.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-12-06-34.bag]

	1299 s

	349 MB

	EG

	

	b2-2015-09-01-11-55-40.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-11-55-40.bag]

	1037 s

	274 MB

	UG

	

	b2-2015-09-01-12-16-13.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-12-16-13.bag]

	918 s

	252 MB

	EG

	

	b2-2015-09-15-14-19-11.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-15-14-19-11.bag]

	859 s

	225 MB

	
	OG

	

	b2-2015-11-24-14-12-27.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-11-24-14-12-27.bag]

	843 s

	226 MB

	
	OG

	

	b2-2016-01-19-14-10-47.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-01-19-14-10-47.bag]

	310 s

	81 MB

	
	OG

	

	b2-2016-02-02-14-01-56.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-02-02-14-01-56.bag]

	787 s

	213 MB

	EG

	1 gap in laser data

	b2-2016-03-01-14-09-37.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-01-14-09-37.bag]

	948 s

	255 MB

	EG

	

	b2-2016-03-15-14-23-01.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-15-14-23-01.bag]

	810 s

	215 MB

	EG

	

	b2-2016-04-05-14-44-52.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-05-14-44-52.bag]

	360 s

	94 MB

	
	OG

	

	b2-2016-04-27-12-31-41.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-27-12-31-41.bag]

	881 s

	234 MB

	
	OG

	

3D Cartographer Backpack – Deutsches Museum

This data was collected using a 3D LIDAR backpack at the
Deutsches Museum [https://en.wikipedia.org/wiki/Deutsches_Museum].
Each bag contains data from an IMU and from two Velodyne VLP-16 LIDARs,
one mounted horizontally (i.e. spin axis up) and one vertically
(i.e. push broom).

License

Copyright 2016 The Cartographer Authors

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Data

	ROS Bag [http://wiki.ros.org/Bags]

	Duration

	Size

	Known Issues

	b3-2015-12-10-12-41-07.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-12-41-07.bag]

	1466 s

	7.3 GB

	1 large gap in data, no intensities

	b3-2015-12-10-13-10-17.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-13-10-17.bag]

	718 s

	5.5 GB

	1 gap in data, no intensities

	b3-2015-12-10-13-31-28.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-13-31-28.bag]

	720 s

	5.2 GB

	2 large gaps in data, no intensities

	b3-2015-12-10-13-55-20.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2015-12-10-13-55-20.bag]

	429 s

	3.3 GB

	

	b3-2015-12-14-15-13-53.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-14-15-13-53.bag]

	916 s

	7.1 GB

	no intensities

	b3-2016-01-19-13-26-24.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-01-19-13-26-24.bag]

	1098 s

	8.1 GB

	no intensities

	b3-2016-01-19-13-50-11.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-01-19-13-50-11.bag]

	318 s

	2.5 GB

	no intensities

	b3-2016-02-02-13-32-01.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-02-13-32-01.bag]

	47 s

	366 MB

	no intensities

	b3-2016-02-02-13-33-30.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-02-13-33-30.bag]

	1176 s

	9.0 GB

	no intensities

	b3-2016-02-09-13-17-39.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-02-09-13-17-39.bag]

	529 s

	4.0 GB

	

	b3-2016-02-09-13-31-50.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-09-13-31-50.bag]

	801 s

	6.1 GB

	no intensities

	b3-2016-02-10-08-08-26.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-02-10-08-08-26.bag]

	3371 s

	25 GB

	

	b3-2016-03-01-13-39-41.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-03-01-13-39-41.bag]

	382 s

	2.9 GB

	

	b3-2016-03-01-15-42-37.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-01-15-42-37.bag]

	3483 s

	17 GB

	6 large gaps in data, no intensities

	b3-2016-03-01-16-42-00.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-01-16-42-00.bag]

	313 s

	2.4 GB

	no intensities

	b3-2016-03-02-10-09-32.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-02-10-09-32.bag]

	1150 s

	6.6 GB

	3 large gaps in data, no intensities

	b3-2016-04-05-13-54-42.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-13-54-42.bag]

	829 s

	6.1 GB

	no intensities

	b3-2016-04-05-14-14-00.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-05-14-14-00.bag]

	1221 s

	9.1 GB

	

	b3-2016-04-05-15-51-36.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-05-15-51-36.bag]

	30 s

	231 MB

	

	b3-2016-04-05-15-52-20.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-15-52-20.bag]

	377 s

	2.7 GB

	no intensities

	b3-2016-04-05-16-00-55.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-16-00-55.bag]

	940 s

	6.9 GB

	no intensities

	b3-2016-04-27-12-25-00.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-27-12-25-00.bag]

	2793 s

	23 GB

	

	b3-2016-04-27-12-56-11.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-27-12-56-11.bag]

	2905 s

	21 GB

	

	b3-2016-05-10-12-56-33.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-05-10-12-56-33.bag]

	1767 s

	13 GB

	

	b3-2016-06-07-12-42-49.bag [https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-06-07-12-42-49.bag]

	596 s

	3.9 GB

	3 gaps in horizontal laser data, no intensities

PR2 – Willow Garage

This is the Willow Garage data set, described in:

	“An Object-Based Semantic World Model for Long-Term Change Detection and
Semantic Querying.”, by Julian Mason and Bhaskara Marthi, IROS 2012.

More details about these data can be found in:

	“Unsupervised Discovery of Object Classes with a Mobile Robot”, by Julian
Mason, Bhaskara Marthi, and Ronald Parr. ICRA 2014.

	“Object Discovery with a Mobile Robot” by Julian Mason. PhD Thesis, 2013.

License

Copyright (c) 2011, Willow Garage
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Data

	ROS Bag [http://wiki.ros.org/Bags]

	Known Issues

	2011-08-03-16-16-43.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-03-16-16-43.bag]

	Missing base laser data

	2011-08-03-20-03-22.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-03-20-03-22.bag]

	

	2011-08-04-12-16-23.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-12-16-23.bag]

	

	2011-08-04-14-27-40.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-14-27-40.bag]

	

	2011-08-04-23-46-28.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-23-46-28.bag]

	

	2011-08-05-09-27-53.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-09-27-53.bag]

	

	2011-08-05-12-58-41.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-12-58-41.bag]

	

	2011-08-05-23-19-43.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-23-19-43.bag]

	

	2011-08-08-09-48-17.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-09-48-17.bag]

	

	2011-08-08-14-26-55.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-14-26-55.bag]

	

	2011-08-08-23-29-37.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-23-29-37.bag]

	

	2011-08-09-08-49-52.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-08-49-52.bag]

	

	2011-08-09-14-32-35.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-14-32-35.bag]

	

	2011-08-09-22-31-30.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-22-31-30.bag]

	

	2011-08-10-09-36-26.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-10-09-36-26.bag]

	

	2011-08-10-14-48-32.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-10-14-48-32.bag]

	

	2011-08-11-01-31-15.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-01-31-15.bag]

	

	2011-08-11-08-36-01.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-08-36-01.bag]

	

	2011-08-11-14-27-41.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-14-27-41.bag]

	

	2011-08-11-22-03-37.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-22-03-37.bag]

	

	2011-08-12-09-06-48.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-09-06-48.bag]

	

	2011-08-12-16-39-48.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-16-39-48.bag]

	

	2011-08-12-22-46-34.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-22-46-34.bag]

	

	2011-08-15-17-22-26.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-15-17-22-26.bag]

	

	2011-08-15-21-26-26.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-15-21-26-26.bag]

	

	2011-08-16-09-20-08.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-09-20-08.bag]

	

	2011-08-16-18-40-52.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-18-40-52.bag]

	

	2011-08-16-20-59-00.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-20-59-00.bag]

	

	2011-08-17-15-51-51.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-17-15-51-51.bag]

	

	2011-08-17-21-17-05.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-17-21-17-05.bag]

	

	2011-08-18-20-33-16.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-18-20-33-16.bag]

	

	2011-08-18-20-52-30.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-18-20-52-30.bag]

	

	2011-08-19-10-12-20.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-10-12-20.bag]

	

	2011-08-19-14-17-55.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-14-17-55.bag]

	

	2011-08-19-21-35-17.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-21-35-17.bag]

	

	2011-08-22-10-02-27.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-22-10-02-27.bag]

	

	2011-08-22-14-53-33.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-22-14-53-33.bag]

	

	2011-08-23-01-11-53.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-23-01-11-53.bag]

	

	2011-08-23-09-21-17.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-23-09-21-17.bag]

	

	2011-08-24-09-52-14.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-09-52-14.bag]

	

	2011-08-24-15-01-39.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-15-01-39.bag]

	

	2011-08-24-19-47-10.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-19-47-10.bag]

	

	2011-08-25-09-31-05.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-09-31-05.bag]

	

	2011-08-25-20-14-56.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-20-14-56.bag]

	

	2011-08-25-20-38-39.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-20-38-39.bag]

	

	2011-08-26-09-58-19.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-26-09-58-19.bag]

	

	2011-08-29-15-48-07.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-29-15-48-07.bag]

	

	2011-08-29-21-14-07.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-29-21-14-07.bag]

	

	2011-08-30-08-55-28.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-08-55-28.bag]

	

	2011-08-30-20-49-42.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-20-49-42.bag]

	

	2011-08-30-21-17-56.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-21-17-56.bag]

	

	2011-08-31-20-29-19.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-31-20-29-19.bag]

	

	2011-08-31-20-44-19.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-31-20-44-19.bag]

	

	2011-09-01-08-21-33.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-01-08-21-33.bag]

	

	2011-09-02-09-20-25.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-02-09-20-25.bag]

	

	2011-09-06-09-04-41.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-06-09-04-41.bag]

	

	2011-09-06-13-20-36.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-06-13-20-36.bag]

	

	2011-09-08-13-14-39.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-08-13-14-39.bag]

	

	2011-09-09-13-22-57.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-09-13-22-57.bag]

	

	2011-09-11-07-34-22.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-11-07-34-22.bag]

	

	2011-09-11-09-43-46.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-11-09-43-46.bag]

	

	2011-09-12-14-18-56.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-12-14-18-56.bag]

	

	2011-09-12-14-47-01.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-12-14-47-01.bag]

	

	2011-09-13-10-23-31.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-13-10-23-31.bag]

	

	2011-09-13-13-44-21.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-13-13-44-21.bag]

	

	2011-09-14-10-19-20.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-14-10-19-20.bag]

	

	2011-09-15-08-32-46.bag [https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-15-08-32-46.bag]

	

Magazino

Datasets recorded on Magazino robots [https://www.magazino.eu/?lang=en].

See the cartographer_magazino [https://github.com/magazino/cartographer_magazino]
repository for an integration of Magazino robot data for Cartographer.

See the LICENSE file in cartographer_magazino for details on the dataset
license.

Data

	ROS Bag [http://wiki.ros.org/Bags]

	Duration

	Size

	Known Issues

	hallway_return.bag [https://storage.googleapis.com/cartographer-public-data/bags/toru/hallway_return.bag]

	350 s

	102.8 MB

	

	hallway_localization.bag [https://storage.googleapis.com/cartographer-public-data/bags/toru/hallway_localization.bag]

	137 s

	40.4 MB

	

Frequently asked questions

Why is laser data rate in the 3D bags higher than the maximum reported 20 Hz rotation speed of the VLP-16?

The VLP-16 in the example bags is configured to rotate at 20 Hz. However, the
frequency of UDP packets the VLP-16 sends is much higher and independent of
the rotation frequency. The example bags contain a sensor_msgs/PointCloud2 [http://www.ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html]
per UDP packet, not one per revolution.

In the corresponding Cartographer configuration file [https://github.com/googlecartographer/cartographer_ros/blob/master/cartographer_ros/configuration_files/backpack_3d.lua] you see
TRAJECTORY_BUILDER_3D.num_accumulated_range_data = 160 which means we
accumulate 160 per-UDP-packet point clouds into one larger point cloud, which
incorporates motion estimation by combining constant velocity and IMU
measurements, for matching. Since there are two VLP-16s, 160 UDP packets is
enough for roughly 2 revolutions, one per VLP-16.

Why is IMU data required for 3D SLAM but not for 2D?

In 2D, Cartographer supports running the correlative scan matcher, which is normally used for finding loop closure constraints, for local SLAM.
It is computationally expensive but can often render the incorporation of odometry or IMU data unnecessary.
2D also has the benefit of assuming a flat world, i.e. up is implicitly defined.

In 3D, an IMU is required mainly for measuring gravity.
Gravity is an attractive quantity to measure since it does not drift and is a very strong signal and typically comprises most of any measured accelerations.
Gravity is needed for two reasons:

1. There are no assumptions about the world in 3D.
To properly world align the resulting trajectory and map, gravity is used to define the z-direction.

2. Roll and pitch can be derived quite well from IMU readings once the direction of gravity has been established.
This saves work for the scan matcher by reducing the search window in these dimensions.

How do I build cartographer_ros without rviz support?

The simplest solution is to create an empty file named CATKIN_IGNORE [http://wiki.ros.org/catkin/workspaces] in the cartographer_rviz package directory.

How do I fix the “You called InitGoogleLogging() twice!” error?

Building rosconsole with the glog back end can lead to this error.
Use the log4cxx or print back end, selectable via the ROSCONSOLE_BACKEND CMake argument, to avoid this issue.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Cartographer ROS Integration

 		
 Configuration

 		
 Tuning

 		
 Two systems

 		
 Built-in tools

 		
 Example: tuning local SLAM

 		
 Correct size of submaps

 		
 The choice of scan matchers

 		
 Tuning the correlative scan matcher

 		
 Tuning the CeresScanMatcher

 		
 Verification

 		
 Special Cases

 		
 Low Latency

 		
 Pure Localization in a Given Map

 		
 Odometry in Global Optimization

 		
 ROS API

 		
 Cartographer Node

 		
 Command-line Flags

 		
 Subscribed Topics

 		
 Published Topics

 		
 Services

 		
 Required tf Transforms

 		
 Provided tf Transforms

 		
 Offline Node

 		
 Occupancy grid Node

 		
 Subscribed Topics

 		
 Published Topics

 		
 Assets writer

 		
 Sample usage

 		
 Configuration

 		
 First-person visualization of point clouds

 		
 Demos

 		
 Pure localization

 		
 Revo LDS

 		
 PR2

 		
 Taurob Tracker

 		
 Public Data

 		
 2D Cartographer Backpack – Deutsches Museum

 		
 License

 		
 Data

 		
 3D Cartographer Backpack – Deutsches Museum

 		
 License

 		
 Data

 		
 PR2 – Willow Garage

 		
 License

 		
 Data

 		
 Magazino

 		
 Data

 		
 Frequently asked questions

 		
 Why is laser data rate in the 3D bags higher than the maximum reported 20 Hz rotation speed of the VLP-16?

 		
 Why is IMU data required for 3D SLAM but not for 2D?

 		
 How do I build cartographer_ros without rviz support?

 		
 How do I fix the “You called InitGoogleLogging() twice!” error?

_static/up-pressed.png

_static/up.png

